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Abstract

This paper extends the first order formulations presented in Part I to second order methods for relocation
of structural natural frequencies from their initial design values to new modified frequencies. The method is
based on an inverse formulation and solution algorithm of the eigenvalue problem. Using the second order
Taylor’s expansion series, the required parameter variation to achieve a desired natural frequency shift for
the structure is computed through second order differential or binomial equations. The proposed technique
can also incorporate the design constraints or objective functions in the system equations. The formulations
are quite generic and applicable to all finite element structures. The accuracy of the proposed methods is
tested by conducting several case studies, the results of which demonstrate the validity of the technique for a
wide range of practical problems.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The first order approximation methods for modification of eigenvalues have been investigated
in Part I of this work where good agreement between exact and approximate solutions was
achieved. However, practical situations can still remain where larger or more accurate degrees of
frequency shift are sought. For such cases, higher order derivative of eigenvalues and eigenvectors
are required in order to establish second order differential equations or second order Taylor series
expansion of eigenvalues.

The sensitivity of eigenvalues and eigenvectors are considered as important issues in structural
design optimization, dynamic system identification and control. These sensitivities represent a
linearized estimate of the change in the modal parameters, principally frequencies and modal
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shapes, due to perturbations of the stiffness and mass matrices of the numerical model. Various
methods have been proposed in the past [1–5] for accurate and efficient computation of these
sensitivity coefficients. As it will be seen, the accuracy of eigenvector derivatives depends on the
number of eigenvectors taken into consideration. It is numerically uneconomical to compute
many eigenvectors of a real structure with many degrees of freedom. Lin et al. [6] introduced a
method to reduce the order of original finite element model [7], and a proposed practical
perturbation method for computation of eigenvector derivatives which require only the
eigenvectors themselves in order to considerably reduce the computational effort. Also, Alvin
[8] has introduced an iterative procedure for computing eigenvector sensitivities due to finite
element model parameter variations. His method is a preconditioned conjugate projected
gradient-based technique and is intended to utilize the existing matrix factorizations developed for
an iterative eigensolution such as Lanczos or Subspace Iteration.

2. Preliminaries

The first order methods for eigenvalue shift approximations have been investigated in part I of
this work where good agreement between exact and approximate solutions was observed for small
shifts of frequency. In situations where larger or more accurate frequency shifts are required, a
higher order derivative of eigenvalues and eigenvectors are required in order to establish second
order equations for modal variables. Consider again the eigenvalue problem free vibration of a
finite element structure without damping:

f½K� � zm½M�gfymg ¼ 0; ð1Þ

where ½K�; ½C�; and ½M� are stiffness, damping and mass matrices, respectively. Also fymg is the
mth eigenvector of the system and zm is its corresponding eigenvalue related to the systems natural
frequencies defined as

zm ¼ ð2pfmÞ
2: ð2Þ

2.1. Derivatives of eigenvalues with respect to design variables

The differentiation of Eq. (1) with respect to a design variables b results in

f½K�0 � z0m½M� � zm½M�0gfymg þ f½K� � zm½M�gfy0mg ¼ 0: ð3Þ

Pre-multiplication of Eq. (3) by fymg
T; the second term will take the form ðfymg

T � f½K� �
zm½M�gÞfy0mg which will be zero, because the term in parentheses is actually the transpose of
Eq. (1) which is zero. Re-arrangement of the terms results in

z0m ¼ fymg
Tf½K�0 � zm½M�0gfymg; ð4Þ

where ð Þ0 ¼ @=@b: Eigenvectors are normalized with respect to the mass matrix as

fyig
T½M�fyjg ¼

1; i ¼ j;

0; iaj:

(
ð5Þ

ARTICLE IN PRESS

K. Farahani, H. Bahai / Journal of Sound and Vibration 274 (2004) 507–528508



In general where there may be k structural parameters used for dynamic optimization, Eq. (3) may
be written in the partial form as

@zm

@bj

¼ fymg
T @½K�

@bj

� zm

@½M�
@bj

� �
fymg; j ¼ 1;y; k: ð6Þ

Differentiating Eq. (4) with respect to the parameters b and rearranging gives

z00m þ ðfymg
T½M�0fymgÞz

0
m þ ðfymg

T½M�00fymg þ 2fymg
T½M�0fy0mgÞzm

� 2fymg
T½K�0fy0mg � fymg

T½K�00fymg ¼ 0: ð7Þ

It is therefore necessary to calculate fy0mg:

2.2. Derivative of eigenvectors with respect to design variables

Pre-multiplying Eq. (4) by ½M��1 and assuming ½D� ¼ ½M��1½K� gives

ð½D� � zm½I�Þfymg
0 þ ð½M��1½K�0 � z0m½I� � zm½M��1½M�0Þfymg ¼ f0g; ð8Þ

where ½I� is the diagonal unit matrix. It is noted that from Eq. (1) one can write

ð½D� � zm½I�Þfymg ¼ f0g: ð9Þ

Eq. (9) implies that matrix ½D� has the same eigenvalues and eigenvectors of the system. To
establish the derivative of mass normalized mode shapes with respect to design parameters b;
fymg

0 is expanded in the space of eigenvectors:

fymg
0 ¼

Xi¼n

i¼1

lifyig; ð10Þ

where n is the number of mode shapes and li’s are the corresponding coefficients to be calculated.
Substituting Eq. (10) into Eq. (8) and noting that ½D�fymg ¼ zmfymg; one hasXi¼n

i¼1

fliðzi � zmÞfyigg þ ð½M��1½K�0 � z0m½I� � zm½M��1½M�0Þfymg ¼ f0g: ð11Þ

Pre-multiplying (9) by fyig
T½M�; one arrives at

li ¼
fyig

Tð½K�0 � zm½M�0Þfymg
ðzm � ziÞ

; iam: ð12Þ

Finally, to calculate lm; which is the projection of the derivative of the vector on itself, one
differentiates Eq. (5) with respect to design parameters b and also use Eq. (10) to arrive at

lm ¼
�1

2
fymg

T½M�0fymg: ð13Þ

The case of coalescent eigenvalues is excluded in this work, although the method can be extended
to cater for that case as well. In the case of repeated eigenvalues, problems arise as any linear
combination of eigenvectors corresponding to the repeated eigenvalue is also a valid eigenvector
and the eigenvectors of the repeated eigenvalues are not unique. In the case of repeated
eigenvalues, the eigenderivatives are obtained through the solution of another subeigen problem
[9–11]. In addition, Eq. (12) is singular for the repeated eigenvalue. Throughout the paper, matrix
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and vector quantities are enclosed in ½ � and f g brackets, respectively, and barred quantities
denote initial values of the variables in their pre-modified state.

3. Approximate solution based on second order differential equation of eigenvalues

The second differentiation of Eq. (4) with respect to design variables gave rise to terms
containing second derivative of eigenvalues and first derivative of the eigenvectors. The resulting
equation is a second order differential equation:

z00m þ Az0m þ Bzm þ C ¼ 0; ð14aÞ

A ¼ ðfymg
T½M�0fymgÞ; B ¼ ðfymg

T½M�00fymg þ 2fymg
T½M�0fy0mgÞ;

C ¼ �2fymg
T½K�0fy0mg � fymg

T½K�00fymg: ð14bÞ

The initial conditions of Eq. (14a) are

zmjb¼ %b ¼ %zm; z0mjb¼ %b ¼ ffymg
Tð½K�0 � zm½M�0Þfymggjb¼ %b ¼ %z0m: ð14cÞ

As an approximation, the coefficients of the differential equation (14a) are assumed to be
constants. This implies again that the eigenvectors remain constant with respect to changes in the
design variables. The solution of differential equation (14) results in zm as a function of b:
However, it is noted that all the coefficients of the equation vary with b: Therefore, the solution
will offer a good approximation for dynamical characteristics of structure in terms of b in the
vicinity of %b: The result will be in the form zm ¼ zmðbÞ; which will be again solved for b to
determine a required frequency shift Dzm:

Dzm ¼ zmðbÞ � %zm: ð15Þ

Eq. (15) is generally a non-linear equation and can be solved using an iterative scheme. It is
possible that the optimization problem could contain several design variables. This situation will
result in a system of second order partial differential equations with independent variables bj:

z00m þ Ajz
0
m þ Bjzm þ Cj ¼ 0; j ¼ 1;y; k; ð16Þ

where k is the number of design variables. The above system of differential equations whose
coefficients were defined in Eq. (14b) should be solved together with their corresponding initial
conditions. In order to reduce Eq. (16) and simplify its solution, additional practical equations of
constraint may be introduced.

3.1. Method 1: proportionality constraint for the second order system of differential equations

To reduce the number of unknowns and hence the number of differential equations in (16), it is
possible to define simple relations between design variables based on a practical judgement. As an
example, all the design variables may be linearly related through a global variable a as

ðbj � %bjÞ
%bj

¼ aoj; j ¼ 1;y; k; ð17Þ
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where oj are optional weights and may be chosen using engineering judgement. Therefore, having
a as the only independent variable, the resulting differential equation from Eq. (7) for eigenvalue
zm will be

@2zm

@a2
þ fymg

T @½M�
@a

fymg
� �

@zm

@a
þ fymg

T @2½M�
@a2

fymg þ 2fymg
T @½M�

@a
@fymg
@a

� �
zm

� 2fymg
T @½K�

@a
@fymg
@a

� fymg
T @2½K�

@a2
fymg ¼ 0 ð18aÞ

with initial conditions:

zmja¼0 ¼ %zm; z0mja¼0 ¼ fymg
T @½K�

@a
� zm

@½M�
@a

� �
fymg

� �����
a¼0

¼ %z0m: ð18bÞ

Also, for every scalar, vector, or matrix quantity X ; one has

@X

@a
¼
Xj¼k

j¼1

@X

@bj

@bj

@a
¼
Xj¼k

j¼1

@X

@bj

ðoj
%bjÞ; ð19Þ

@2X

@a2
¼
Xj¼k

j¼1

@2X

@b2
j

ðoj
%bjÞ

2: ð20Þ

4. Second order partial derivative of eigenvalues

In addition to the second derivative of zm with respect to a design variable, it is also required to
establish the second order partial derivative of zm with respect to two different variables.
Therefore, differentiating Eq. (1) with respect to design variables bi and bj; one can write

@2zm

@bi @bj

¼fymg
T @2½K�

@bi @bj

�
@zm

@bj

@½M�
@bi

� zm

@2½M�
@bi @bj

� �
fymg

þ 2fymg
T @½K�

@bi

� zm

@½M�
@bi

� �
@fymg
@bj

ð21aÞ

or

ð½K� � zm½M�Þ
@2fymg
@bi @bj

þ
@2½K�
@bi @bj

�
@2zm

@bi @bj

½M� �
@zm

@bi

@½M�
@bj

�
@zm

@bj

@½M�
@bi

� zm

@2½M�
@bi @bj

� �
fymg

þ
@½K�
@bi

�
@zm

@bi

½M� � zm

@½M�
@bi

� �
@fymg
@bj

þ
@½K�
@bj

�
@zm

@bj

½M� � zm

@½M�
@bj

� �
@fymg
@bi

¼ 0: ð21bÞ

It is noted from differentiation of Eq. (1) with respect to every b that

@½K�
@b

�
@zm

@b
½M� � zm

@½M�
@b

� �
fymg ¼ �ð½K� � zm½M�Þ

@fymg
@b

: ð22Þ
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Pre-multiplying Eq. (21b) by fymg
T; one arrives at

@2zm

@bi @bj

¼fymg
T @2½K�

@bi @bj

�
@zm

@bi

@½M�
@bj

�
@zm

@bj

@½M�
@bi

� zm

@2½M�
@bi @bj

� �
fymg

� 2
@fymg

T

@bi

ð½K� � zm½M�Þ
@fymg
@bj

: ð23aÞ

Substitution of Eqs. (10) and (12) into Eq. (23a) yields

@2zm

@bi @bj

¼fymg
T @2½K�

@bi @bj

�
@zm

@bi

@½M�
@bj

�
@zm

@bj

@½M�
@bi

� zm

@2½M�
@bi @bj

� �
fymg

þ 2
Xk¼n

k¼1

ðlmiklmjkðzm � zkÞÞ: ð23bÞ

lmrk is the component of the vector @fymg=@br on fykg which is defined as

@fymg
@br

¼
Xk¼n

k¼1

ðlmrkfykgÞ; ð24aÞ

lmrk ¼
fykg

T @½K�
@br

� zm

@½M�
@br

� �
fymg

zm � zk

; kam; ð24bÞ

lmrm ¼
�1

2
fymg

T @½M�
@br

fymg; k ¼ m: ð24cÞ

As it is seen, the second derivative of an eigenvalue requires the derivative of eigenvectors. Lin
et al. [6], have proposed a practical perturbed form to compute the eigenvector derivatives,
requiring only the eigenvector itself and the inverse of mass and stiffness matrices. Also, Alvin has
introduced an iterative method with improved accuracy and efficiency for the eigenderivative
computations. For the case of repeated eigenvalues where two or more eigenvalues are equal and
Eq. (24b) is singular, the methods outlined in Refs. [9–11] can be adopted to obtain the
eigenvector derivatives. For the special case of two repeated eigenvalues, the method outlined in
the references shows how to compute the eigenvector derivative.

5. Total differential form for the second order approximation

The second order total differential form of FðxiÞ as a function of several variables xi can be
expressed as

dF ¼
Xi¼k

i¼1

@F

@xi

dxi

� �
þ
Xi¼k

i¼1

Xj¼k

j¼1

1

2

@2F

@xi @xj

� �
dxi dxj

� �
; ð25Þ

where d is the total differential operator. As a second order approximation, Eq. (25), will be used
for the cases where finite variation in the variables and functions are involved.
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5.1. Method 2: unconstrained method

Here, Eq. (25) will be used as a second order approximation for eigenvalue optimization. This is
equivalent to the use of second order expansion of Taylor series for multi-variable functions.
From Eq. (25) one has

Dzm ¼
Xi¼k

i¼1

@zm

@bi

Dbi

� �
þ
Xi¼k

i¼1

Xj¼k

j¼1

1

2

@2zm

@bi @bj

� �
Dbi Dbj

� �
: ð26Þ

Obviously, the number of parameters to be changed is more than the number of frequencies to be
shifted. To have a square system of equations without any constrains, additional frequency
changes Dzj must be introduced to the system. Therefore, Eq. (26) was set up to have the same
number of frequency changes Dzj as the number of modified design variables, with the superfluous
frequency shifts set to zero:

Xi¼k

i¼1

Xj¼k

j¼1

1

2

@2zm

@bi @bj

� �
Dbi Dbj

� �
þ
Xi¼k

i¼1

@zm

@bi

Dbi

� �
� Dzm ¼ 0; m ¼ 1;y; k; ð27Þ

where @2zm=ð@bi @bjÞ can be obtained from Eq. (23).
Eq. (27) offers a system of non-linear equations, which may be solved by the Newton–Raphson

iterative method using the following scheme:

fDbðiþ1Þg ¼ fDbðiÞg � ½JðiÞ��1fFðiÞg; ð28Þ

where the right superscript shows the number of iterations and fDbg is the vector of unknowns.
Also, fFg is vector of equations with the components Fm defined as

Fm ¼
Xi¼k

i¼1

Xj¼k

j¼1

1

2

@2zm

@bi @bj

� �
Dbi Dbj

� �
þ
Xi¼k

i¼1

@zm

@bi

Dbi

� �
� Dzm: ð29Þ

The Jacobian matrix ½J� ¼ @F
@Db

� 	
is defined as

Jij ¼
@Fi

@Dbj

¼
Xk¼n

k¼1

@2zi

@bj @bk

� �
Dbk

� �
þ

@zi

@bj

: ð30Þ

It is much more efficient to conduct the optimization by including only the design variables which
are most sensitive to a change in zm: This is ensured by choosing the variables with maximum
@zi=@bj obtained from Eq. (6). In order to apply Newton–Raphson scheme, the results Dbj of the
linear part of the system were used as our initial vector to begin the iteration process:

Xi¼k

i¼1

@zj

@bi

Dbi

� �
¼ Dzj; j ¼ 1;y; k: ð31Þ

Therefore, writing Eq. (30) in matrix form gives

fDbð0Þg ¼ ½S��1 � fDfg; ð32Þ
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where

Sij ¼ @zi=@bj: ð33Þ

5.2. Method 3: constrained method based on optimization of an objective function

In Section 5.1, additional frequency changes were introduced in order to obtain a square system
of equations. It is also possible to achieve a square system of equations by defining physical
constraints. These constraints may be based on practical engineering considerations. Alter-
natively, it is possible to define objective functions for optimization purposes. As an example, if
the function to be optimized is the mass of the structure, Eq. (26) should be solved such that the
added weight to the structure Dm is a minimum. Consider that added mass to the structure is
defined as

Dm ¼ mðb1; b2;y; bkÞ: ð34Þ

Adopting a Lagrange multipliers method for the problem, the functional to be minimized is

P ¼ mðb1;y; bkÞ þ l
Xi¼k

i¼1

Xj¼k

j¼1

1

2

@2zm

@bi @bj

� �
Dbi Dbj

� �
þ
Xi¼k

i¼1

@zm

@bi

Dbi

� �
� Dzm

( )
; ð35Þ

where l is the Lagrange multiplier. The minimization is carried out according to the equations

@P
@bj

¼
@P
@l

¼ 0; j ¼ 1;y; k ð36Þ

or

@mðb1;y; bkÞ
@bj

þ l
Pi¼k

i¼1

@2zm

@bi @bj

� �
Dbi

� �
þ

@zm

@bj

� �
¼ 0; j ¼ 1;y; k;

Pi¼k

i¼1

Pj¼k

j¼1

1

2

@2zm

@bi @bj

� �
Dbi Dbj

� �
þ
Pi¼k

i¼1

@zm

@bi

Dbi

� �
� Dzm ¼ 0:

8>>><
>>>:

ð37Þ

The above is a non-linear system of equations and the Newton–Raphson iterative solution is
again used for their non-linear solution. Similar to Eq. (32), the results from the linear part of the
system, which is obtained by ignoring the higher order terms in Eq. (37), may be used as the initial
value for the iterative procedure.

5.3. Method 4: constrained method based on proportionality

In many engineering problems it is not feasible to introduce additional physical constraints in
order to achieve sufficient number of equations. Instead, it may be possible to choose additional
criterion to reduce the number of unknowns for a particular kind of problem. As an example,
consider the problem where it is required to vary bj by changing the thickness or cross sectional
area of several finite elements in order to optimize zm: It is possible to consider a global variable a
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with respect to which all the design variables change proportional to a weight oj as

ðbj � %bjÞ
%bj

¼ aoj; j ¼ 1;y; k: ð38Þ

This reduces the problem to a single unknown variable a: The weights can be chosen from a
sensitivity analysis of the design variables. Eqs. (19), (20), (23), (26), and (38) will therefore result
in a single variable parabolic equation to be solved for a:

a2
Xi¼k

i¼1

Xj¼k

j¼1

1
2
oioj

%bi
%bj

@2zm

@bi @bj

� �( )
þ a

Xi¼k

i¼1

@zm

@bi

ðoi
%biÞ

� �( )
� Dzm ¼ 0: ð39Þ

Also, @2z1=ð@bi @bjÞ will be obtained from Eq. (23) to establish Eq. (39). It should be noted that for
practical purposes, for example in a plate or shell structures, the additional required change in
thickness of an element can be converted into its equivalent stiffeners which will be attached to the
structure at their corresponding elemental position.

5.4. Method 5: partially constrained method based on proportionality

In Section 5.1, the number of unknowns was reduced to one, by using a global variable a: It is
possible to simultaneously reduce both the number of unknowns and increase the number of
equations to achieve a square system of equation. This can be considered as the combination of
Methods 2 and 4, as explained previously. Therefore, by adopting p independent new design
variables, ar; where pok; and p optimized eigenvalue, zr; the constraints can be written as

ðbi � %biÞ
%bi

¼
Xs¼p

s¼1

asosi; i ¼ 1;y; k ð40Þ

and the system of equations will become

Dzr ¼
Xi¼p

i¼1

Xj¼p

j¼1

1

2

@2zr

@ai @aj

� �
aiaj

� �
þ
Xi¼p

i¼1

@zr

@ai

ai

� �
; r ¼ 1;y; p: ð41Þ

To compute the derivatives with respect to new variables, one has

@zr

@as

¼
Xi¼k

i¼1

@zr

@bi

@bi

@as

¼
Xi¼k

i¼1

@zr

@bi

ðosi
%biÞ; r; s ¼ 1;y; p ð42Þ

and

@2zr

@as @at

¼
@

@at

Xm¼k

m¼1

@zr

@bm

ðosm
%bmÞ

 !
¼
Xm¼k

m¼1

Xn¼k

n¼1

@2zr

@bm @bn

ðosmotn
%bm

%bnÞ
� �

; ð43Þ

where p is number of unknowns, as; and k is the number of possible material or geometric design
variables to be changed. Also, osj is the weight used for the jth design variable corresponding to
the sth independent variable. Again, decision on the magnitude of weights osj may be made upon
engineering judgement, structural feasibility, and other considerations. Substitution of Eqs. (42)
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and (43) into Eq. (41) yields

Dzr ¼
Xi¼p

i¼1

Xj¼p

j¼1

1

2

Xm¼k

m¼1

Xn¼k

n¼1

@2zr

@bm @bn

ðoimojn
%bm

%bnÞ
� � !

aiaj

( )

þ
Xi¼p

i¼1

Xm¼k

m¼1

@zr

@bm

ðoim
%bmÞai

( )
; r ¼ 1;y; p ð44Þ

or

Dzr ¼
1

2

Xi¼p

i¼1

Xj¼p

j¼1

Xm¼k

m¼1

Xn¼k

n¼1

oimojn
%bm

%bn

@2zr

@bm @bn

aiaj

� �

þ
Xi¼p

i¼1

Xm¼k

m¼1

oim
%bm

@zr

@bm

ai

� �
; r ¼ 1;y; p: ð45Þ

Obviously, Eq. (45) is a system of non-linear equations, which may be solved through a Newton–
Raphson iterative scheme, similar to the solution used for Eq. (27).

6. Case studies

To show the accuracy and efficiency of the presented second order methods, the same examples
presented in Part I of this paper are considered. The results are compared against their exact
solutions, which are obtained by computing the eigenvalues of the modified optimum structure
using the ANSYS program. These eigenvalues are then compared with the eigenvalues used as
inputs into the inverse algorithm.

Example 1. Consider the same simply supported 2-D truss structure shown in Fig. 1 presented in
Part I. The objective is to shift the first frequency of the structure with a second order
approximation. Sensitivity analysis reveals the most sensitive members for the first eigenvalue
shift. The most sensitive members are then changed:

(a) with equal proportions using differential equations (Method 1);
(b) with equal proportions using Method 4.

The ANSYS program is used to find the dynamic characteristics of the structure. The 5 natural
frequencies of the structure are given in Table 1. Table 2 shows the most sensitive members with
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highest dz1=dAi: In all the formulations, only the first five modal shapes, obtained from ANSYS
are used.

(a) From Table 3, elements 5, 6, 10, and symmetrically 7, 8, and 16 are selected for modification
such that in all cases

ðAi � %AiÞ
%Ai

¼ a; i ¼ 5; 6; 7; 8; 10; 16; ð46Þ

where it is assumed that oi ¼ 1: For every truss element number, i; the stiffness matrix ½KðiÞ� is
defined as

½KðiÞ� ¼
EiAi

Li

C2 CS �C2 �CS

CS S2 �CS �S2

�C2 �CS C2 CS

�CS �S2 CS S2

2
6664

3
7775

ARTICLE IN PRESS

Table 1

Dynamic characteristics of structure (Fig. 1)

Mode number i

i 1 2 3 4 5

Eigenvalue zi 15790 56707 127098 333202 1218025

Frequency fi (Hz) 20.0 37.9 56.7 91.9 175.7

Table 2

First eigenvalue sensitivity (Fig. 1)

j

1 2 5 6 9 10 11 12 13

Aj 250 250 250 250 82.5 82.5 82.5 82.5 82.5

dz1=dAj 11961.0 11961.0 49322.1 57963.2 40490.1 500171 0.2 6442.3 24579.5

Table 3

Values of @2z1=ð@bi@bjÞ (Fig. 1)

j i

5 6 7 8 10 16

5 �314266 51925 51907 206376 �3186738 2092696

6 51925 �272703 �272703 51907 526532 526349

7 51907 �272703 �272703 51925 526349 526532

8 206376 51907 51925 �314266 2092696 �3186738

10 �3186738 526532 526349 2092696 �32314326 21220353

16 2092696 526349 526532 �3186738 21220353 �32314326
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from which their derivatives are found. Since the mass matrix is constant, from (14) one has

z001 þ Az01 þ Bz1 þ C ¼ 0;

where A ¼ B ¼ 0 and

C ¼ �2fy1g
T @½K�

@a
@fy1g
@a

¼ �2fy1g
T
X

i

%Ai
@½K�
@Ai

 ! X
i

%Ai
@fy1g
@Ai

 !
¼ 2101:

The initial conditions are

z1ja¼0 ¼ 15790; z01ja¼0 ¼ fy1g
T @½K�

@a

� �
fy1g

����
a¼0

¼ 13617:

The solution therefore will be

z1 ¼ �1051a2 þ 13617aþ 157909: ð47Þ

Figs. 2 and 3 give the comparison between the solution obtained from the ANSYS computer
program and Eq. 47 and the error in frequency shift respectively. Due to the closeness of the
results from the exact and the approximate solution, the results from the two methods in Fig. 2 are
not distinguishable. It can be seen from the above results that even for large structural changes,
Eq. (47) offers a very accurate frequency shift model. Comparing with the first order solution, the
maximum error has decreased from 2.7 to 1.15 which is quite significant.
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Fig. 2. Method 1 for frequency shift (Fig. 1).
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Fig. 3. Percentage error of Method 1 (Fig. 1).
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(b) Again using Eq. (46) as the proportionality constraint, since the weights are unity oi ¼ 1;
from Eq. (39) one has

Dzm ¼ a2
X

i

X
j

1

2
%bi
%bj

@2zm

@bi @bj

� �
þ a

X
i

%bi
@zm

@bi

� �
; ð48Þ

where from Eqs. (23) and (24) one has

@2zm

@bi @bj

¼ �2
@fymg

T

@bi

½K�
@fymg
@bj

¼ 2
Xk¼n

k¼1

ðlmiklmjkðzm � zkÞÞ; ð49Þ

lmik ¼
1

zm � zk

fykg
T @½K�
@bi

fymg; kam; ð50aÞ

lmim ¼
�1

2
fymg

T @½M�
@bi

fymg: ð50bÞ

Here, m ¼ 1; n ¼ 5; and i; j ¼ 5; 6; 7; 8; 10; 16: Table 3 shows the magnitude of @2z1=ð@bi@bjÞ: It is
noted that for i ¼ j; it is possible to compute @2z1=@b2

i using Eq. (7):

@2z1

@b2
i

¼ 2fy1g
T @½K�
@bi

@y1

@bi

� �
: ð51Þ

This may slightly differ from the results computed using Eq. (49), unless all the eigenvectors and
eigenvalues of the structure are taken into account.

Therefore, using Tables 2 and 3 together with Eq. (48),

z1 ¼ �1051a2 þ 13617aþ 15790 ð52Þ

is arrived at. It is interesting to note that the resulting Eq. (52) is exactly the same as Eq. (47)
obtained using the other method. Again, the percentage of frequency shift and the accuracy of
(52) are shown in Figs. 4 and 5, respectively. Again comparison with the first order solution
reveals that the maximum error has decreased from about 2.7 to about 1.15.

Example 2. The first frequency of the same 2-D truss structure presented in Example 2 of Part I of
this paper is again shown in Fig. 6 to be optimised. The consistent mass matrix used for the truss
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Fig. 4. Frequency shift vs. %area change (Fig. 1).
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members is given by

½MðiÞ� ¼
riAiLi

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2
6664

3
7775:

@½M�=@Ai is initially computed for the truss members. The dynamic characteristics and sensitivity
are given in Tables 4 and 5. In order to shift the first frequency of the truss, the properties of the
most sensitive members are changed by

(a) using Method 1 with equal absolute weights for all the chosen members;
(b) using Method 4 with equal absolute weights for all the chosen members.

(a) Now consider that elements 2, 3, 10, 12, 13, 14, and 16 are selected for modification in order
to achieve an increase in the first eigenfrequency of the structure. Assuming equal percentages for
their area changes, one has

Ai � %Ai

%Ai

¼ oia; i ¼ 2; 3; 10; 12; 13; 14; 16; ð53Þ

where oi ¼ 1 ði ¼ 10; 16Þ; and oi ¼ �1 ði ¼ 2; 3; 12; 13; 14Þ: The sign of the chosen weights depend
on whether the members have an increasing or a decreasing effect on the frequency shift.
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Fig. 5. Percentage error in frequency shift (Fig. 1).

Fig. 6. 2-D truss with consistent mass: A1 ¼ 250 cm2; A2 ¼ 100 cm2; r ¼ 2880 kg; E ¼ 2:0E11 N=m2:
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Therefore, from Eqs. (18)–(20) one has

z001 þ Az01 þ Bz1 þ C ¼ 0; ð54aÞ

A ¼ fy1g
T½M�0fy1g; B ¼ 2fy1g

T½M�0fy01g; C ¼ �2fy1g
T½K�0fy01g; ð54bÞ

z1ja¼0 ¼ %z1; z01ja¼0 ¼ fy1g
Tf½K�0 � z1½M�0gfy1gja¼0 ¼ %z0ja¼0; ð54cÞ

where all the differentiations are carried out with respect to a: To compute the coefficients and the
initial conditions of Eq. (54), Eqs. (19) and (20) are used. The resulting differential equation is

z001 � 0:290z01 � 0:143z1 � 347 ¼ 0; ð55aÞ

z1ja¼0 ¼ 15796; z01ja¼0 ¼ 13525 ð55bÞ

and the solution is

z1 ¼ 65258 � 68543  e�0:091a þ 19081  e0:382a: ð56Þ

Figs. 7 and 8 show the frequency shift and its error against the percent of area change in the
structural members. It can be seen that the error is quite small and negligible. It is seen that for a
20% cross-sectional area change, a shift of 8.5% in the frequency is achieved with an induced
error of about 0.5%, compared to the error of the first order method which was about 2.2%.

(b) Again assuming

ðAi � %AiÞ
%Ai

¼ oia; i ¼ 2; 3; 10; 12; 13; 14; 16 ð57Þ

ARTICLE IN PRESS

Table 5

First eigenvalue sensitivity (Fig. 8)

j

1 2 5 6 9 10 11 12 13

Aj 250 250 250 250 100 100 100 100 100

dz1=dAj �10813 �77940 27647 �25032 34463 347683 �33112 �98508 �70429

Table 4

Dynamic characteristics (Fig. 8)

Mode i

1 2 3 4 5

zi 15796 83311 135637 270344 886489

fi (Hz) 20.0 45.9 58.6 82.8 149.9
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with oi ¼ 1 ði ¼ 10; 16Þ; and oi ¼ �1 ði ¼ 2; 3; 12; 13; 14Þ; from Eq. (39) one has

a2
Xi¼k

i¼1

Xj¼k

j¼1

1
2
oioj

%bi
%bj

@2zm

@bi @bj

� �( )
þ a

Xi¼k

i¼1

@zm

@bi

ðoi
%biÞ

� �( )
� Dzm ¼ 0;

where

@2zm

@bi @bj

¼ fymg
T �

@zm

@bi

@½M�
@bj

�
@zm

@bj

@½M�
@bi

� �
fymg þ 2

Xk¼n

k¼1

ðlmiklmjkðzm � zkÞÞ; ð58aÞ

lmrk ¼

fykg
T @½K�

@br

� zm

@½M�
@br

� �
fymg

zm � zk

; kam;

� 1
2
fymg

T @½M�
@br

� �
fymg; k ¼ m:

8>>>>><
>>>>>:

ð58bÞ

Table 6 shows the values of @2z1=@bi@bj for the selected members. Eqs. (57) and (58) result in the
following relation for the eigenvalue change:

z1 ¼ 2541a2 þ 13525aþ 15796: ð59Þ
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Fig. 8. Percentage error in frequency shift (Fig. 6).
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Fig. 7. Frequency shift vs. %area change (Fig. 6).
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The result of which are shown in Figs. 9 and 10. As it is seen, for 20% cross-sectional area change,
an 8.5% frequency shift is achieved with an induced error of about 1.5% which is less than the
first order error which was about 2.1%.

Example 3. Consider the same 2-D arch shown in Fig. 11 presented in Example 3 of Part I of this
paper. The initial thickness of the arch is 30 cm and the material and geometrical properties are
given in the figure. The consistent mass matrix is used for the elements in the model. The objective

ARTICLE IN PRESS

Table 6

@2z1=ð@bi@bjÞ

j i

2 3 10 12 13 14 16

2 794341 896510 �1870307 1085340 768256 1085340 �1870307

3 896510 794341 �1870307 1085340 768256 1085340 �1870307

10 �1870307 �1870307 �32233433 �2150844 �1503353 �2150844 �1153658

12 1085340 1085340 �2150844 �134826 927843 1311400 �2150844

13 768256 768256 �1503353 927843 373959 927843 �1503353

14 1085340 1085340 �2150844 1311400 927843 �134826 �2150844

16 �1870307 �1870307 �1153658 �2150844 �1503353 �2150844 �32233433
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Fig. 9. Frequency shift vs. %area change (Fig. 6).
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Fig. 10. Percentage error in frequency shift (Fig. 6).
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again is to initially identify here the most sensitive elements with respect to the first frequency.
This will be then followed by modification of the properties of those elements by

(a) using the differential equation method (Method 1);
(b) using the proportionality constraints (Method 4).

The first few frequencies are given in Table 7. Also, Tables 8 and 9 show the sensitivity of the
first two frequencies with respect to members’ thicknesses.

(a) Adopting equal weights in the members’ relative change of thickness, and with negative
signs for members with negative dz1=dti; one has

ðti � %tiÞ
%ti

¼ oia; i ¼ 2; 4; 11; 12; 15; 16; 22; 24; ð60Þ

where oi ¼ 1 ði ¼ 2; 4; 22; 24Þ; and oi ¼ �1 ði ¼ 11; 12; 15; 16Þ: Therefore, from Eqs. (13) and (14)
one arrives at

z00 � 0:336z0 � 0:131zþ 1359 ¼ 0;

zja¼0 ¼ 198590; z0ja¼0 ¼ 146301;

(
ð61Þ

ARTICLE IN PRESS

Table 7

Natural frequencies

Mode i

1 2 3 4 5 6

zi 198590 388383 1023320 1372854 2801953 3738760

fi (Hz) 70.93 99.19 161.00 186.48 266.41 307.74

Fig. 11. A 2-D plane stress arch structure: E ¼ 1E10 N=m2; r ¼ 2500 kg=m3; n ¼ 0:25; t ¼ 30 cm:
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which gives rise to an equation for eigenvalue change in terms of proportionality factor a:

z ¼ 10355 � 49537e�0:231a þ 237773e0:567a: ð62Þ

The variation of frequency shift and its error are shown in Figs. 12 and 13 respectively.
It is observed that even considering the initial part of the graph, the induced error with this

method is 1.1% which is remarkably lower than the first order method with an error of 2.7%.
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Table 8

First eigenvalue sensitivity

Member i

2 4 11 12 15 16 22 24

dz1=dti 61376 81799 �44391 �56270 �44391 �56270 61376 81799

Table 9

Second eigenvalue sensitivity

Member i

1 3 11 12 15 16 21 23

dz2=dti 149351 61969 �109910 �96791 �109910 �96791 149351 61969
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Fig. 12. Frequency shift vs. %area change (Fig. 11).
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Fig. 13. Percentage error in frequency shift (Fig. 11).
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(b) Again,

ti � %ti

%ti

¼ oia; i ¼ 2; 4; 11; 12; 15; 16; 22; 24; ð63Þ

where oi ¼ 1 ði ¼ 2; 4; 22; 24Þ and oi ¼ �1 ði ¼ 11; 12; 15; 16Þ: It is now necessary to establish
Eq. (39) for the problem. Therefore,

a2
Xi¼k

i¼1

Xj¼k

j¼1

1
2
oioj

%bi
%bj

@2z1

@bi @bj

� �
þ a

Xi¼k

i¼1

@z1

@bi

ðoi
%biÞ

� �
� Dz1 ¼ 0; ð64Þ

where according to Eq. (45),

@2z1

@bi @bj

¼ �fy1g
T @z1

@bi

@½M�
@bj

þ
@z1

@bj

@½M�
@bi

� �
fy1g � 2

@fy1g
T

@bi

ð½K� � z1½M�Þ
@fy1g
@bj

: ð65Þ

The magnitude of @2z1=ð@bi@bjÞ; which are obtained using the first six natural modes, are shown in
Table 10. The resulting approximate equation for eigenvalue in the vicinity of the current
configuration of the structure will therefore be

z ¼ 36440a2 þ 146301aþ 198591: ð66Þ

The exact change of frequency is the same as that shown in Fig. 12. As shown in Fig. 14, the
percentage of error induced due to the application of this method is 1.1% which is much less than
the 7.2% obtained by its corresponding first order method.

Therefore, with a 30% change in the cross-sectional area of eight most sensitive elements up to
30%, the frequency will shift more than 11% with an error of less than 0.7% which shows a good
accuracy for the method.
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Table 10

@2z1=ð@bi@bjÞ for sensitive elements using the first six modes

j i

2 4 11 12 15 16 22 24

2 �37516 �40807 �14024 �22761 �16529 �23809 9300 12840

4 �40807 �64972 �11805 �19464 �22602 �26945 12839 22495

11 �14024 �11805 16763 23191 26097 31975 �16529 �22603

12 �22761 �19464 23191 29627 31975 38013 �23810 �26945

15 �16529 �22602 26097 31975 16764 23191 �14024 �11804

16 �23809 �26945 31975 38013 23191 29627 �22761 �19463

22 9300 12839 �16529 �23810 �14024 �22761 �37516 �40806

24 12840 22495 �22603 �26945 �11804 �19463 �40806 �64974
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7. Conclusions

In this work, some second order methods are introduced to relocate the desired natural
frequencies of the structures. This is done through the second order Taylor’s expansion series
resulting in second order differential or binomial equations. The method is then combined with
objective functions to incorporate design constraints. The formulations are quite general and
applicable to all finite element structures since all the stiffness and mass matrices derivatives are
obtained regardless of the type of the element. If the mass or stiffness matrix has a complicated
formulation with respect to a design variable, its derivative can be obtained numerically. The
accuracy of the proposed methods is tested by conducting several case studies. The results show
very significant improvements when compared with the first order approaches presented in part
one of this paper.
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